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Abstract

Approximation methods ~cr the inio i’ •~verage cost per unit time

problem with a controlled diffusion l , ~, 1 1~l is treated. In order to

work with .~ bounded state space , we u~; the reflecting diffusion

model of Strook and Varadhan , although other models can also be

treated. The control problem is approximated by an average cost

per unit time problem for a Markov chain , and weak convergence

methods are used to show convergence of the minimum costs to that

for the optimal diffusion . The procedure is quite natural and al-

lows the approximation of many interesting functionals of the

optimal process.

1. Introduction. In this paper , we develop an approximation and

computational approach to a particularly difficult class of sto-

castic control problems . The computational problem leads to the

approximation of the original process and optimization problem by

an interesting and simpler sequence of processes and optimization

problems , which yields much information on the original optimal

process.

Let w() denote an R”—valued Wiener process , let ~ denote a

compact set and define the bounded and continuous functions

f(• ,•): Rr ~ Rr; k(’,): ~~~ ~~ a ( . ) :  R r 
-
~ r r

matrices. Let x(•) denote a non—anticipative solution to the

Ito equation

(1) dx = f(x,u)dt + o (x)dw ,

where u (.) is a non-anticipative (always with respect to w(’))

~~-valued progressively measurable control function . For typo-

graphical simplicity we sometimes write x for x(s), etc..
U 

S

Define Y (.) by

1(2) ~U ( )  = fli ~ E
u 

— I k(x5,u ) d s ,x s

where E~ denotes the expectation when x0 
= x and control u()

is used.
We are interested in finding good approximations to the infimum

~~

‘ of Y U (X) over all controls u(.), and to the optimal control ,
and also other information concerning the optimal trajectory , in

cases where ~
u (X) does not depend on the initial state x.

Furthermore , we want to be able to compute the approximation and

~

-- ..- -  - - . - .. . . . . -
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obtain the addi t iona.’ ‘~~~ ‘dat i n I t f l~~ pi  a~:tL i c i  computationa]

methods.

A number of difficulties stand in ~ way of a practical computa-

tion. First , the state space Rr 01. x(~ ) is unbounded and the

control problem (1) — (2) will have to be modified so that the

state space is bounded. This is a particularly ticklish point,

since we want a modification which yields usable information con-

cerning the original problem. In particular situations , a great
deal of attention must be devoted to this. For definiteness , we

use the bounded process defined in Section 4, although many others

are possible. Next , we have not assumed very much akout the system

(1). If y U (~~) actually depends on x, then very little is known

about the problem. Fortunately , for many problems (perhaps the

most important ones) we can restrict attention to u(S ) which are

stationary (u(•) is a stationary process), or to the staticnary

pure Markov case (where u,~ u(x
~
)). Even then , the solution to

(1) may not be unique . In practical problems , it is often demanded

that the system have a certain robustness. Criteria such as (2) are

of interest when the system is to operate over a long period of

time , usually of uncertain duration and with an uncertain in itial
condition . It is usually desired that the control be stat i onary

pure Markov , and that  for  the controls u ( s )  in the class which

are to be considered there be an invariant measure ~~~‘
, and the

measures of x(t) tend to as t -
~ ~ for  eac~ x = x0. In

certain cases ( e . g . ,  Kushner  [ 1] )  one can res t r ic t  a t t en t ion  to

such controls. In general , l i t t le  is known about the cont inuous

parameter problem , and many of the difficulties in the way of

establishing convergence of a computational procedure are due to

this. Also , it is usually hard to approximate problems over an

infinite time interval , unless the approximation and limit

processes are s tat ionary. Furthermore , the ergodic subsets for
each approximation may depend on the approximation . In any case ,
the procedures to be developed here are very natural , provide much

information , and do give the desired results under broad

conditions. We will later make an additional assumption on the

system .
Our approach follows the ideas in Kushner [ 2 ] ,  [3)  and Kushner

and DiMasi [4]. The problem (1), (2) is approximated by a control
problem on a Markov chain (with approximation parameter h ) ,  and
weak convergence methods are used to show that certain interpola-
tions of the sequence of approximating chains oonverge weakly to an 

-~~~~~~~~ -~~~~~~~~~~~~~~ --~~~~ ~~~ -- -~~~~ --~~~~~—--- --~~~~~~~~~~ -



e~ .~~al p iocess.  The I ’ t~~ . to. s ~~~~~~‘ it dc1 ’l of i n i :o r mat i c~ on

the optimal process; e. .1 ., .~ovar~ n t : ”- ~ures and joint uistribution~• .

A formal dynamic proqr~Aninling approa ‘ ‘o the optimization of (1),

(2) is given in Section 2, Section 3 ai .jues for a “computational

approximation ” and a bounded state space. The actual E or:rL of the

bounded state space model , the Strook-Varadhan model of a reflected

diffusion [5] , is discussed in Section 4. This model is used i~artly

for the sake of specificity and partly because it allows us to

illustrate c i e  interesting features of the weak convergence and

boundary tic : scaling. The actual discrete state model is developed

in Section 5 and Sections 6 and 7 give the weak convergence results.

2. A Dynamic Programming Sufficient Condition for

Optimality for (1) , (2)

Let ~yU  denote the differential generator of (1)

= ~ f.(x ,u) + ~~a~~~(x) T~~ J~
’

a(S) c (.)cy (•) ‘/2.

When evaluating .JuF(.) at t,~~i , for a C2 (Rr) function F(’),
2 rset x = x~ , u = u~ . Suppose that there is a C (R ) func t ion

V(S) and a constant ‘
~ such that

(3) inf [L’ V (x) + k(x ,~~) 
— T ]  = 0,

where ./ ‘
~ is now treated as a parametrized operator. I f  there

is a Borel function ~~ ( )  on Rr such that ‘~~ = ~ ( x )  minimizes

at x in (3) for each x £ R~ , and to which there corresponds a

process (1) such that E
~
V(xt)/t 

-
~ 0, then

(4a) = u r n  .~~ E U 
1 k(x ,~~~)ds.

If , in addition , v (•) is any ~i—valued non-anticipative (w ,t)

progressively measurable function (henceforth called a control)

corresponding to which there is a solution to (1), and if

~~

. E”V(x~ ) -
~ 0, then

(4b) u r n  .
~~ E~ j k(x5,v )ds,t_*~~
t 0 S

uAij tfl
—a---

-
j~~M COFi T F ~2~~
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and tr ( • ) is optima) I sp~ t ~ 
‘ i i ~~~~ ~~~~, . ) ir1 Lh ~ ~~ n~~c tha t

, U . 1
v for  any x0 ‘.~~~~‘ei f i~ d o  ‘ ‘ndom . Under ~~( ‘ )  or v ( ~~~ .

(1) is homogeneous , but there is not ‘ essarily a un~.que invariant

measure. THIS PAGE IS BES T QUALITY F~ACT1CM~~
FRO~t COPY FUR~NISkiF.D 1’O DDQ ~~~~~~~ —

3. Bounded State Space Approximations. The approximatio!~ and

computational method developed in [2] is roughly as follows. Lot

u() be fixed , and let it be a function only of the state x. We

derive a family (parametrized by h) of Markov chains. For f.ixed

u(•), the sequence of (suitable) continuous parameter interpola-

tions of the chains converge weakly to the solution to (1) , as

h -
~ 0, under broad conditions. For each h, we have a ccn t rc i l ec l

( i nd ex e d  by u (~ ) ) f a m i l y of Mark ov  cha ins .  Op t i m iz e , us n j  t he

appropriate Markov chain version of (2) , and obtain the ml :,r~m

value function for each chain .As h -
~ 0, the sc~iucnce of nir.imum

values converges to the infirnum , over a large class of comparison

controls , of the value function of the original pr ob i em.  Also ,

many properties of the approximations converge to similar

properties of the limiting optimal process.

Since our interest is in feasible computations, as well as in

convergence , it is necessary that for each h the state space of

the approximating chain be finite. This requirement necessitates

revision of the original system (1). The following are among

several possibilities that can be dealt with .

(i) The state space may be naturally bounded , in that there

are bounded sets G 0, G1 such that  if x 0 
£ G0, then x

~ 
G1 for

all t arid al l  u (~ )
(ii) If x0 £ C

0, then the approximatiny ~
arkov chain remains

in G~ , for all h , under the optimizing controls.

(iii) Impulsive control terms ([2], Chapter 8) are added to the

cost function , such that the state is guaranteed to be “impulsively ’

uriven into G~ , if it ever leaves G1.

( i v)  A bounded set C can be in t roduced , such tha t  x~ is

not allowed to leave G = G + 3G. To guarantee this , a suitable

boundary process is introduced on 3G.

For concreteness in the development , a particular foim of ( iv )

will be dealt with. We let G be a hyper—rectangle and suppose

that x~ is reflected from 3G. A hyper—rectangle is chosen only

to simplify the specification of the approximation on the boundary .

Any region for which a specification with the proper convergence

--~--~~~~ -~~
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1. The Submartingale 1i ~~~ I em of t t r o~~ ~‘~~d “.‘ ar aE lh an  j. 5j  in 0.

In order to assure ourselves that t d e  ~eflection i s well de i dned ,

assume

( A l) fo r  ea ch i , a. (x) is strictly positive on the b o u n dar y

planes of C which are parallel to ~x : x . =

where  x .  = ~th component of x.
_  1

We introduce a boundary control and cost function . Let be

a compact set , and d e f i n e  the bounded continuous functions

~, • ) G ’  ~2/0 R r ; k 0
( . , . ) ~~~ :~c \  ~a’0

- - R ; ,? ( ) :  ~‘G~~~~ 1.0 , i .

Let the vector  ~, ( x , ~) w i t h  o r i g in  x point  s t r i c t l y  i n t e r i o r

to C for each x €. 30 and ~ 7/s . For A C set

IA (x) = indicator of set {x : :-: ~ A } ,  let x ( ) denote the gen eric

element of C
r
[O,~~) (R r_valued continuous functions en [0 ,~~)) as

well as the solution to ( 1 ) .  Ho pef ully, no confusion will arise.

Define C~ = Cr [O ,~~) fl tx( S ) x~ £ C , all t < ~~~ and

= c-algebra on C~ induced by the projections x , s t. For

this reflecting diffusion ,adrrissible controls u(~~ are ~~- v al u e E .

when the process state x
~ 

c G , and are ~‘0
-valued when the orocess

s t a t e++ x t 3G. For t q ( ~~, • )  
~~ C

2 ’1(~ 
‘ [0,~~) )  an d ~dmissib1e

u(S ), define the function FU (., .) on C~~[0,u ) by

(5) F~~(x(.),t )  = q ( x ~~1 t )  - q (x 0 10)  - + , q(x ,s)I
0
(x~~ ds.

For the mom2nt , let u ( )  depend only on the current state x.
— ~u r

Suppose that for some y C C, there is a measure ~: , cu C~ such
2 1 —

P~~(x 0 = y }  = 1 and for each q (’ ,•) in C ‘ (C —
~ [0,’~)) for ‘1:hich

c (x)~~~(x~ t) + ‘y ’(x ,u(x))q (x,t) > 0 for all x E ~G , and all t > 0 ,

the process 
~~~~~~~~~~~~~~~~~ 

is a submartingale. Then is

said to solve the submartingale problem for initial value y. If ,

in the above , the vector y can be replaced by a measure on

and P~ {x L = ‘
~ (t’ ) for each Borel set r , then P’

~ is said
0 0 0 o

to solve the subniartingale problem for initial measure

If uf .) depends only on the current state x , then the solution

~~2 lC ‘ is the set of uniformly bounded continuous functions on
C X [0,~~) whose derivatives up to second order in x and f i r s t
in t, are continuous and uniformly bounded .

++ and u~. is ~~ wasurable. 
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t rho  subma . :t in j a le  p. “ ye, t i: ‘ -  l u-I el ctu~ dif~ usicu

and ‘, (x , u ( x )  ) is the ~~ L ige “ d a re c t  of . r e . f l cc t i o r ~ at  x ~
and ~ (x) is a scale factor which dci :-’’ i i  Lf l ~~ S t~1e r e l a t i v e  t~ rre  t h a t

x (.) spends on ~G ( [ 2 ~~ , [ 3 1 ,  [5]). ~ ince P (•) on~ v affects thc

time scale , and not the costs ([3], [2], Chapter 10), for our

modelling purpose it is suflicirnt to set (x) 1, whfrI~ we I , 11

do.

Let P~ solve the subniartincjale problem . There is a non-

decreasing scalar valued process ~~~~~~~~ which only ir.creases when

~- 3G , and is such that for the above q(~~,’)

(6) FU (x(.), t) — [q (x ,s)  +

is a martinca e (with respect to fP ” , i4~ }) . Furthermore , there

is a standard Wiener process+ w (•) such that under PU ,

( x ( ~~),u (~~),a(~~)) are non—anL~ cipative with respect to w~~~) and

w.p. 1.

( 7 )  x~ = y + f ( x ,u~~~L~~(x )ds +

+ I
~ ,G~~

X
S

) X
S F U s /

~~~~s~

For the control problem , wu may wish to deal  w i t h  a lar c e r  c lass

of (admissible) controls than the stationary pure ~1arko\’ class.

Fc can still speak of a solution to the submarting ale problem , but

then the measure or 1’~ must be defined on the aphropr~ ate
0

c - a lqebr a  on the p roduc t  space of C~ and the pa th  space fo r  the

control  process .  I t  t h i s  extended s u b m a r t i n g a l e  problem has a

solution , then the non—decreasing process ~~
. ( )  and ~ icue r  ~:rocess

w (•) will still exist and (6), ( 7 )  hold.

A r-odifie: control problem. Suppose that there is a solution to

the submartindile problem corresponding to admissible control

u ( s ) ,  and initial condition y. Define ~U (y) now by

(8) Y~~(y) = flrn
~~~~

I : k ( x , u
~~~

IG
(x

~~~
ds + f k 0

(x , u 5 ) I ~~0 (x ~~~c~~~~~.

+To construct the Wiener process w(~ ), we may have to augment theprobability space by .‘dding an independent Wiener process.
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Sin P = 1, we can set ~ = S .  The forma l dy n a mi c  pro rar :rn -

equation (3) is replaced by

inf [.5/~~V(x) + k(x , -~) - ~7] = 0, x ~- C ,

( 9 )
inf [V 1 (x )  ‘~ (x ,~~) + k (x,~ ) 

— ‘yJ = 0, x Cx 0

where V ( ’ )  is h o w  assumed to be bounded. If there is a solution

to the submartingale problem corresponding to admissible control

v(s) and initial condition y , and also a smooth function V(•)

and constant y solving (9) , then

(10)

If there is a Borel admissible control U ( s )  which attains the

infimum in (9) , and for which the submartinga ic problem has a solu-

tion for each initial condition x , then ~ = Y
1” (y) and ~~~~

- )  is

optimal. We emphasize that although (9) will serve as the basis of

our approximation, it need rot have a solution of any sort for our

method to be valued.

5. Discretization. There are a number of tc- :hn :~ rL:es f o r  g e tt i a - .: a n

approximating sequence of Markov chain  cont ro l  i .rob ems w~ th the

correct convergence p rope r t i e s .  ~:e use the method in [ 2 ]  m a i n l y

because it is r e l a t i v e l y  s t r a i g h t f o r w a r d, f a i r ly  w a i l  unders tood

and we can refer to existing results. The method 13 Laccd .on a

finite difference approximation with difference intcr’.:al h. A

particular (but natural) finite difference apprcximation to (~
) is

used. It makes no d i f f erence whether  or not ( 9 )  has a smooth solu-

tion , for the finite difference approximation is not used to

solve (9) . After a suitable rearrangement , the c o e f f i c i e n t s  of

certain terms in the finite difference approximation wi l l  be

transition probabilities for an approximating controlled Narkov

chain. This is the ~~~~~~y use to which (9) will he put. The method

gives us an approximating chain simply and automatically. A

detailed outline of the method and of some of the convergence

properties will be given , but many of the details which can be

found in the basic references [2], [3], [4] will be omitted.

Let e. = unit vector in ~
th coordinate direction , and assume for

convenience that each side of C is an integral multiple of



L OL denote the f i n i t e  d i f f e r e n c e  gr id  on 0 , and s f :

— G
h ? where Gb 

is the f i n i t e  d i f f e r e n c e  cj ri.d on d . . ow , le~
us discretize (9). On ~G , use the approximation

V (x) -
~ [V(x+e.h) — V(xH/h , if ‘y i ( x ,~~) 0

(11) 1

V (x ) --  [V(x) — V(x—e,h) )/h, if y .  (x,a) ~ 0.
1 1

In C, use the approximation

V (x )  -
~~ [V(x+e.h) -- V(x) ]/h , if f .  (x ,— ~.) 0

(12)  V (x ) -
~~ [V (x) — \ ‘(x—c.h) J /h , if  f . ( x , e )

i
V ( x )  -

~ [V (xfe . h) + V (x-c . h) - 2V ( x )  j /h~ .
~<1 1 

1

The approx imat ions  fo r  V ( x )  , i ~ j , arc l o n q ,  and the  r e a d er
~~1 j

is referred to [2), Chapter 6.2 for one set of possibilities .

S imply to avoid w r i t i n g  these down here , we suppose that c(x)c ’ (n)

is diagonal. This assumption is not required by anything except

our current laziness. It does not affect the outcome , onl’~ the

precise form of the functions Q ( . , . )  and ( .  , •

below .

Def ine  Q
h
(x,.),,t h (x) and 

~~~~~ 
by

h ~ f.(x ,’~) + ~ c ? ( x ) ,  x C d , ,

Q
1 (x ,~~) ~ ~~~~~

‘ ‘
~~‘~ 

, x L

sup

(where a ranges over the appropriate set ~2i or

At h (x) h/
~
5h

(x) on

h
2
/Q

h
(x) on G

h
.

Approximating the derivatives in (9) by (l i)- (12) and rcarrangin~
terms yields the following equation , where ~h ~~~ 

~h (.) arc

used to denote the solution to the discretized equation and we use

the definitions g~~(x) = max [~~(x), 0] and g (x) max [0,-~ (x)].
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2— . -,
‘ - ( 13) h ~ h 

= ~~~~~~~~ 
[_Q

h (x ,a)Vh (x) ~
• ~ v~~xeo .~~ (h~ (x , ~) ~ r~ ( x ) / 2 )

1, -I-

+ h2k(x ,- .I ) ), ~ 1 0h ’

hTh = inf I_ c
~h

(x,L
~
)v ( -

~) + ~ v h ( x ± e . h )~~~~(x ,~~) + hk0 (x ,-.’) ),

0 1, ’

~ I “0h

D e f i n e  ph ( x x , Q b ~~~) ( c o e f f i c i ent of Vh (x ~~c . h ) ) / ~ C x ) ,
p (x ,xH ) = [c 1

(x) — d 1 (x , -~ ) J  ~~ 1 ( x )  . Divide  (1-3 ) through by
Qh (x) and rearrange to get

(14) (x) f 

~
:-
~ 

~~~~~ in~ t ~,h (x.~e .1i) ~
h (x , x.’ ~~~ ~)

+ V ( x ) p  (x,x 1 --’ ) + x ,”)at (x)], x I

and similarly fc’ r x in ~~~ whe r e ~i and k are replaced by
and k 0 , r a sp .  D e f i n e  ph (x , yH )  = 0 fo r  a l l  x ,y  o ther

than  y = x or v = x ± e l: for some i. Then fp h (x,v~ -.~), x ,
y c G

h
} is a t r a n s i t i o n  p r o b ab i l i ty  f o r  a con t ro l l ed  ~ arkov c h a i n .

Let denote the random v a r iab l e s  of the chain , and d e f i n e
= ~ in G , and 2’(x) = on ~G , and r e d e f i n e  k(x ,-’ )

to equal k0 (x,~~) for x ~F. Then (14) can be rewritten in the
form

(15) ~,
h ( x )  ÷ ~

h
~~t

h ( x )  = lu f  [l: Vh (:)~) + k ( x ,a):t
h
(x)], xx 1 h

In (13)— (l5), we supposed that is a constant. This is almost
equivalent to the assumption that there is only one recurrence

class for the chain under the optimal control. If there is more
than one recurrence class , the numerical problem is harder. Let us
hence fo r th  assume

(A 2 )  For each smali  Ii an d under each s t a t i o nary  pure_~1arkov

cont ro l,  t he re  is  only erie r ecu r r ence  class.

This assumption seems to hold in very  many cases otr practical

in teres t .  I t  can he d i spensed  wi t h ,  but then  the problem of
actual ly  solvin ~ ( 1 3 ) — ( l 5 )  is much harder. Under (A2), (15) can be

solved by either Howard ’s iteration in policy space for semi-xarkov

p rocesses , or by a version of the backward iteration method for the

_ _



average cost per cn i t  Lim e L robi cm (see, c .~~ • , Sch;.’ei I z e r  an

Federgruen [8 )  , but  adapted to ~ scmi— ~larkov  i~rocess m o d e l )  .

is an optimal_ stationary pure ~i: rkov  control u
ul ( . )  fo r  i l l  ~m~ 111

h , it is the m i n i m i z e r  in (15) , and it is optima l w i t h  respect to

all controls  for  the d i sc re te  problem . The “ S e m i — M a r h o !” p01 i t

be returned to below. The optimal solution is given in the f i r s t
line of (19).

Discussion of (14). For v r CL , we have for any stationary pUSe

Markov control  u ( )

- h - h Ii ii(16a)  ~~~~~~~~ :
~~~~~n ~ u (S ) used] = f ( ~’, u ( ~’ ) ) ~~.t (

~
-
~~

U - h — h h , , hcoy — 

~n 
= ~~ u ( ) used] (y, ty ) t ( y )  ~

+ o( :~t
h

( y ) )  x I

For y C

u h h ~~
-

— ‘
.
~ 

= ,~~, a ( )  u s e d)  =

(l6b)

ccv ~~~~~ - , h f h 
= v , u ( .  u s ed]  = o ( . t

hl
( v ) )

These “infinitesimal” proeert :es (derived in [~~J , [ 3 J ) ,  t o j o t h
with (15) • suggest  a close r e l a t i on  between the controlled ch a i n ,

and the controlled reflected diffusion .

These relations are brought out quite clearly when the chain is

su i t ab ly  i n t e rpo l a t ed  i n to  a c o n t i n u o u s  pa ramete r  process , and (15)

(16) suqgest aeveral useiiu1 interpolations. First, we note that

solving (15) is t he  only computation t h a t  need be done. Equa t ion
(15) is not qu i t e  the d y n am i c  programming equation for the average

cost per unit time for the controlled chain {~~~~ ) ,  since has
a state dependent coefficient ~t

h (.). However , it is the dynamic

programming equation for a semi-~~arkov  process or , e q u i v a l e n t ly

for the types of continuous j arametcr interpolations which are

discussed below.

Let denotesthe invariant measure which corresponds to the

optimal control. Henceforth, unless otherwise mentioned, {~~~}
refers to the optima l chain, wit l i  initial measure

We now choose an interpolation method and show that the sequence

of interpolated processes converges weakly to a solution to the

submartingale problem corresponding to some adi ;~ ssible control
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• and tha t  t h in  solut ion is an optimal one , with  cost rate

I l i m
h-~ 0

Ei ther  of the f o l l o w in g  two piecewise constant interpolations • : i i  1.

serve our purpose .

n — 1
Interpolation 1. Define f 1

( : ~~~~ = ~~~ th = V i’ t~~. D e : i n c  the
1 1 fl i = 0  £

h h -h  h h
semi—Markov process :, ( . )  i- . ’~’ ~, ( t )  = 

~ri ~~~~ 
~~n ’~~n+* ~~~~~~~~

i n t e r p o lat i o n  was used in [2] , [ 3)  .

I n t e r p o lat i on  2. Let; 
~
(.) denote the Nar kov  j ump process  on

Gh ~ ef i . h~~~ b y :

I f  ;h ( t )  = y, then the avc-~ agc additional time spent in state y

before a j a m p  is .~t
h (v) , an d P {ncx t  s ta te  = y ’ current state =

h , h
= p (y,y u (y) ) . There is a s l igh t  ambigu i ty  here since it 15

hpossible that (y,~~~u ~(v)) 0. But, this should cause no con—

fusion — I c r  it sin~-lv means y h a t  there is a j u m p  of “ zero ’

magnitude . Ihe avor ace  i nt c i rj u r ~ t imes can be nor:r~i l i ze~ to  :ivoio
th i s , bu t  it  hardly see~,s wo rth : :hile .  N o t e  that ;

I- j ’ i : : j ’  in (t , t~ .’j ~h ( t )  = v i  = (L/ ~~L ° ( y ) )  + a ( ‘ )

This  i n t e r~ n l at i o n  is developed in Section 8 of [ 4 ]

Neither interpolation is al~ -iys pre fe rab le  to the o ther .  :r . t e r—

polat ion  2 could have been used in r e fe rences  ~2 ] ,  [ 3 ] ,  but  there

did not seem to be a need f o r  i t  t h e n .  There are advan tages  to

having an interpolation which is a continuous parameter Narkov chain
in tha t  c e r t a i n  concepts  ( such  as s tat i o n a r i t y)  have a c learer

meaning; on the  o ther  hand it is sometimes p r e f e r a b l e  to work wi th

interpolation times that are deterministic f u n c t i o n s  of the  cur ren t

state, since then there are fewe r random var i a b l e s  to worry  abou t .

The l i m i t i n : processes ( see  S e c tio n s  6 an d  7) are the nam e for both

interpolations. In Case 2 , t h e  av er a q e  so journ  t ime in a s ta te  y

(before  the next  j ump , whe the r  of zero value  or n o t)  is ~t
h (v )

precisely the interpolation interval for Case 1. In both cases , the

time spent at a s tate y on the boundary  ( 0 ( h ) , per s o j o u r n)  is

greater than  time spent at  a s t a te  y in Gh 
( O ( h~~) ~er sojourn ,

unless there is the complete degeneracy o (y) = 0). This property

is a consequence of our definition of ~t
1
~(y) for y C 



r1
~~ 

- - - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~

(tq correspond to 
~
‘ ( y )  C 1)

For either Interpolation 1 or 2 ,

(17 )  Vh 
= Urn E b I k ( , u h ) d s/ r ,

J O -
~

h h . h  ,h • hwhere u = u (~~~) , and L Ind ica te s  t h a t  ~ is used. The ~n-

v a r i a n t  measure  for  e i the r  i n t e rpo la t i on  i s  where

( l 8 a)  ~ h
( )  = ~ t ht ( v )  ~~~~~~~ ~t

h ( z ) ~~
l
~ ( z )

Also ,

( l S b )  ~ h 1 h 
( . )  (v , u h 

( v ) )

Equa t ions  (17) and ( 18)  arc not  hard  to v e r i l y .  For examp le ,

( 18)  fo l lows f rom the ergodic theorems for  Markov cha ins  (see

Chung [ 6 ] ,  Section 1.15 , Theorems 1, 2 , 3; sec also [ 2 ] ,
Chapter  6 . 8 , fo r  s i m i l a r  c a l c u l a t i o n s)  . I t  can also ha cbtain ccl

by direct verification o. the Kolmoqorov equation using the in —

variance of ;:h (.) for the discrete parameter c ha i n .  To ct (17)
h h - hwr i t e  u .  f o r  u ( ; . )  and u se  ( 15)  and the rame er :odic theorems

to get

n~~l n—i
(19) 1 [L:~ 10~~~~~~~

’
~~~~~~~~~~~

”
~~~ 

~~~~~~

n — i  n - i
l im [ ~ k ( , u~~)2 t ~~/ ~

n i=0 ~ i=0
(~.op . l)

= lirn  I k(~~~,u
h) ds/th = u r n  t k (~

h h ) d / t
n 5 S fl (w.p.l) j0 ~ S

(w.p.l) t-~~

= lirn Ehk(~~~,u
h)ds/t.

t -~’ 0 ~ ~

Similarly, the first limit in (19) equals

( 2 0 )  ~h 
~ ~

h ( y ) k ( ~. , u h
( y ) )~~t h ( y ) /  \ : h ( y ) t t h ( y )

r h h
= /. i.n (y)k(y,u (y)).

y

_ _ _ _ _ _ _ _ _ _ _ __ _ _ _



Let v (  . ) denote  a stationary p~ rc Narkov con t ro l .  ‘ l e n  ( lf ~
im~ l ies tha t  (here  i.t , nc ; ’ ’ re ~e i - to the var j ab ics  nn (lc  C c(Iltrol

v ( . ) )  fo r  any  x

n—i
~~

(21) ‘ jim 
~~~~~ n-1 1

v ,h

i i - - .

11 0

The proof of opt ima l it y  of u” ( ) ‘ .‘iti: r espect:  t o  any  co ri r r e l  ‘ u lCu

is not necessa r i ly  st at  ion ar v  p u r e  Na~~kov can ho b ased  on a i;:et hod

of Ross [ 7 ]  and is em i t t e d .

6. Weak Convergence.  No w i l l  ‘ .‘ork with in tc i :~ ol i t i en 2 , .; i.oe IL

is a s t r i c t ly  stationary process. Th e method  w i l l  - ou t l i n e  I , i - ut:

the p roofs  w i l l  be u s u a l l y  r e ;  cr r c -d to when a l read y av~~ la ic

elsewhere.  So f a r , ‘.:e have a ceuu encc  of st at ~~ un a r ’  ~‘: t :  e

controls  {u h ( . )  I , corresponding st a r i o na ry  cont~ nu oun  ~~ar a::i t er

Markov cha ins  ~~ h ( . ) } ,  i n v a r ian t  m e a sur e s  ~~~~~~~ an:i ml n ; -;un cooLs

where

- -- h r Ii h - h h
= ;~ (y)e(y, u ( y ) )  = L - (v)k(v ,u ( y ) )

yCC h \ L c

~~~~~~ ~~~~~~ 
1h () )

and

( 2 2 )  1, h L k  (~~~ , u h ) I , (i b ) ds + f k 0 (~~~~ , u ’~ ) I 
~~~~

, (~~~) d u ] ,

where  E h denotes t he exp e c tat i  on under  i n i t i a l  m ea s ur e  ~~ and

we use u h 
= ~~~~~~~~ No o f t en  w r i t e  ~,

1
~ ( s )  as ~~, e tc . ,  for

typographical simp licity.

S’~e obviously can w r i t e

( 2 3 )  -f ~~~~~ f ( ~~~ , u h ) d s

+ I. .(c h)i (~~~,u
h )c1s -f B h ( t )  +



where

Bh ( t )  = 
J 0~ G (~~~ 

r h o - £ (- ~~~, u~~) d s ] ,

B~~( t )  U G
( )  [ d - ~ (~~~, u h ) d s ] .

Denote the two in to  ra l s  in ( 2 2 ]  by Kh (t )  and K~~(t )  , resp .

and the f ir s t  two i n t e gr a l s  on the r i g h t  side of ( 2 3 )  by d~~( t )

and Q~~( t )  , resp. Let D~~~0 ,~~) denote the suace of Rm 
valuca

func t ions  or. [O,~’) 
, cont inuous  on the r i gh t  and wi th  l e f t— h ~ind

limits (Billingsley [9] , Liud vall [10] , K u s h n e r  [2] , Chapter 2)
endowed w it h  the P b or o kh o d  to t -ol c ’~;v .  If  a m e a s u r e  \ -  i I ; I I i C e S  a

process N ° 
~~) w i t h  p at h s  ~n D~~~O , =) w . p . l  an d ) :; t i~ ;ht ,

we abuse t e r m i n al  ocv and nov  ti-c t L [ 1 1  (~ ) } i s  t igh t .  if {

converges weakly  to a m ea s u r e  ‘~ and ‘~ induces a pr ocess  X (~ )

wi th  pa ths  in Dm [ O , ~~) w . p .  1, we say t ha t  X
n1 ( . )  } ~cn v er g e s

weakly to Y ( )  . No o c c a s i on al ly  use  Skorokhod imbedci ing ( [ 11)

Theorem 3.1.1 , or [ 2 ) ,  C ha pt e r  2 ) ,  w h i c h  say s  tha t  if  X ’ (.) -
~~ X ( ~~)

weak ly  in D [O, “)  , then t h e re  are  processes X~ ) , y 1• ( . )  w i th

paths in P’ [ 0 ,  -
~~) and wh ic h  in d u c e  the same measures on P” 0 ,~~ )

as do N ( . ) , X a ( . ) ,  r e s p . ,  -nd  are  such t h a t  N n ( . )  ~~~~
in the Skcrokhod t ou o l cp ’ . t~ in c e  al l  our  l m i t  orocesses ,:ill be

continuous ‘.‘.p. 1, his im~ 1ies Lh~t N ” ( t )  -- :-: C t )  , oi;iforml’: on

b oun ded  ± : :t c r v a l s  . Also , ‘~- c  omi t  the  t i l d e  not ;O: ion . The

f o l l o w in : theore~: I o l l cws  ~rc-:: t h L  r e s u l t s  in 14 ] , d -c t ~~cn 8.

Theorem I .  ~~~~~
( . ) ,  K~~( ) ,  K g ( . ) ,  B 1 (~~) 

~~~~~~~~~ 
0 ( . ) ,  2-~~( • ) ~

{ ( . ) } i o t i d i t cn IY ‘ [0 , ‘ )  , and a l l  l i m i t s  h f v ’ ’  c ont i au o us
paths w . p . l .

We w i l l  n~~xt .  c h u ra c t e r~~ze t he  l i m i t s  of ~B” ( ’ )  , B~~( • )  I.

Let us choose  a w ea k i ’:’ c on v er an n t  subseauence , a lso  in ic~-:c d
by h , and h: ’n cr~1orth i x : - i . The subsc :ucnt r e s u l t s  - L i  ~ no t  c i O ~~~O5 C~

upon the  sc lectr ’d subsc- n:ence . Pcnote the limit by ( .  ) , I T ( . )

K0~~ ), B ( • ) ,  B 0 ( . ) ,  Q ( . ) ,  
~~~ ( . )  . By construction , ‘l’°(t) and

+
Theorern 1 does net r e q u i r e  Al or A2 and holds whe the r  the i n i ti a l
cond i t ions  are r a r c i o r n  or n o t .  Pt needs only the boundedn ess  and
c o n t i n u i t y  of f , o , k , k 0 an d y .  Also , ~

h can be replaced by any
pure Markcv control.
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are martinnalos ( w i t :  rccspeot to the C-cigoh r :i ~~: -

duced by , s t) ~nd an ea sy a i cu l a t - i o n  y ields t t ’t :

2c- Sup B,~ C L )  ~- c  cr k s tan t :  . hT.

t’ C

Thus B 0
(~~) is the o c ro  process .

The quadratic v a r i a t i o n  of  B~~~’ )  ~~

( “ ) l , (~~~~~~~ ) ds ,
.1

0 
S S

where V h
o )  IS such that it converges  to ( x )  c ’ Pd as  h -

~~ 0 ,

u n i f or m ly  in x , and L a :  N h ’ ( t )  ‘ for € t 0. Thea

- h 2 . .  . -
B ( t ) - is uni ; o:uly 3ntec;rable for each t. ~et ~~

‘ ocr.c::e

the  c— a l g e b r a  i n d u c e d  by ~~~ ,B( s )  , K ( s) , K 0
( s)  , ‘~~( s) , g ( s )  , r < t : .

Let N L denote an nd r~~~~ho r h oc~~j of T I C.  In [3 ]  , Lor;; . ;~ 1, it

is shown th~~t fo r  each real T : 0 t h e r e  i s  a c o n s ta nt

tha t , fo r  Ia;:or~-o l at i on  1 a n d  snai l  ;~ 0

(24) I , (~~
°) ~ , ( , ~ ‘ ) d o

‘0  ~— 

—

u n i f o rml y on u , h ( a lt h o u i jh u d id  not an p e ar  in the  d~~r i v a  t i  on ,

onl y an upp er  bound to the v a l u e s  of the d r if t  f u nc t i o n  ‘ ‘ n
used in the  L i e r i v a H ’ n ~ . t he resul t  (2 4 )  depends c n] y en the ;act

that  the comnoneri t of the d i f f u s i o n  te rm c C x )  du’ or l l :c - eona l  to the

boundary is a ni f c r : i y non—degenerate on d; i.e. on PU).

Est imate  ( 2 4 )  also holds  f o r  I n t e rp o l  etion 2 , and is c— r u e t a l  for

the rest  of the  i ’olon:;;cnt. I t  n ay s  t hat  n e i t h e r  c h c  au~ roxina-

tions nor the l im i t  can “ l i n e r ” nc- or  (h u t  not on) the boundary.

In particular , i t  i o p l i e c ;  t hat  the p r o bab i l i t y  is zero  th at  ccvc- r

some subir.Lerval 01 [0 , T] the pa ths for the approximations will

be in fl C and the lim it will be on ~G.

Theorem 2 .  Assum e  A l .  113 (t) , is a c o n t i n u o us  m~~r t in q a l e
It

with quadratic coveriati.on 1 ,(. )c (~ )c ’ ( ~~,jd s .
— j 0~~~ 

S S

Proof. The proof , us~~nq (21), follows s i : ; ; i l lr  ca l ca~~a t~ ~r s  i n
h .

[3 ) , [4] . jet q ( t )  represent any of t h e  vec teL  s ~n ~ (~

(see Theorem 1) , let . n denote an arbitraiy in t e - : cr , L . ,  i

numbers less than or equal to t , l et  s ~
- 0 a n d  ~~.- t q ( . )  n uoto
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a continuous real valued F u n c t i on .  I~v weak Con ‘n;r g c c~ c:e ,

imbedding and the u n i f o r m  i nt e ’r r a I  i li t y  of 0 ( t I  } f o r  each t ,
the resu l t  (mar t inc :a  le p r op e rty  of (.))

1~hg (~~I 1 ( * . ~~~ , ~ ~~ [I3~’~~t+ s)  — L3h ( L ) ]  = 0

implies

Ecj (gOt.), i a)  [ 1 3( t ± s )  — 13(t)] ~~
- 0.

A l s o , the r esu l t

1 h ( h 
( L . )  , i n )  I (1 3 1

~ ( L + s )  - ~
l c ( , ) ]  , ,~h (ti s) — ; C L ) ; ’

- ~ (~~~~~~~ ) ~ (~~~~),o~;] = 0
j 0 G S

-4
t o u et h e r  w i t h  the we d: conv~;rc;cr.ce , Sborokhcd inchedcl i :r ann u r : i f o r m

i nt e gr a b i l it v  c f  P~~( t )  “~ a n d  ( 2 - )  impl ies  tha t

Eg (q ( t 1
) , i ~: a ) ( i ~~ L~- s )  —- ~~~t )  ) (r; (t+s) — B I i _ )  )

— P. ) c P . ) c : ’ P. ) )Us] = 0.
J O - ‘ S S

The a r b i t ra r in e s s  of a C ’ )  , t , t + s , t~~, i ~ n , and a ira 1

the theorem . P . E . D .

We next need a roorusentatica for L (.), (~~~ ( . ) ,  h ( . )  a rni
It is easy to see that all these functions are absolutely continuous

w i t h  respect to LCbOS’R~O measure. thus , there arc neasuroble (~~,t)

functions cI P ) , ( ) , k t ’
~~ ) and ( . )  such t h a t , f o r  almost

a l l  ~- , t ,
r L

Q ( t ) c~~( s ) c i : ; , Q0
( f _ )  =

j o

f t
P (t) = k ( s ) c l s , i<~ 

( t )  = (s)cls.

~~o d o

~Actually, uniform integrability of Bh (t)~~~} (implied by

sup E~~B
h (t) ~ ‘ is not needed . Since ~~~ is a square

h
i ritegrable cont inuous m a r ti n ga l e , i ts quadra t i c  v a r i a t i o n  can he
obtained by a “oca~ ization ” of the argument.

- - - -  --—--.--_
~~~~~~~~~~~~

-
~~~~
--—  - - - - - - - _ _
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No can no’-: proceed in tao ways , ~~- it-j:c’r worki ng w i t h  ‘nc ra i i  nod

random cont ro ls  or by a~o s in u  a uvex i t ’ ’  cor:c i iL  i c t :  a nd  us  i : ~ an

imp l i c i t  1a: ction theorem. td t u d a  the l a t t e r  ( a n i  c s i  c i )  a~ r r : tch .

* Theor em 3. Assume Al and  A 2 .  : - t  I , k , h 0 , , ~

let the sets f f ( x , L~) ,  k ( x , - ’ ) ,  ~c -- : ( x ,~~~ ) and (x ,~~) ,

~ 

~

- 

~~~~~~~~ 

a 0 P-: . ) be con”ex for  eoc~~~~x .  :d:~ -n c h c r c

is a control  u ( ’ )  : iP ~ v€io -: o u in ~~ 
: c c ~~~ i n

_ _ _ _ _ _ _ _ _ _  -— -- -  S — ~~~~ - - - -~~~~-

~~~
‘ “her. ~ L T - g .i t d  o uch  t h a t , f o r  almost  ciii ~ , t ,0 s - - -—-- —

~~~~
— — - -  ____ _______

T~~~ ~~~~, ~~~~~

t
0

( t . )  = ( , ) ~~

k ( t ) = ~~~~~~~~~~~~~~ l~~(~~~)
L

(~~
-
~~ 

= ~ (~ ) I  (~ ‘• 
~ 

‘ I ‘ ~ tL ~L

Proof .  D e f i n e  ;(t) = (~~ ( t )  ,~~ ( L )  ) and P -- .~ C t )  ,~~~ C t )

The proof  uses  the h o n i r  • n t i C c t e  ( 2 . ) a n d  ~be :r u t h o c l  c I  [ 2 ] ,

pp.  1 8 2 — 1 8 3 .  ~3y ( 2  ~c )  an~ :2 ] ,  p : . 1 F f — i f - - , f -z r a h n s t  n J ]  c , ’

~i( t )  L g , ~~
-‘)  I~~~- ,~~)

~~~~~~~~~~~~~~ ~~~~~~~ 

L~~ ( C,~~)

f r om .-:hich he r~~r :J ‘~ fci1’::’s cv the T- c:-d:c ne— -~.: f i e l d  ~m n l J  cit

f u nc t ~~on tizroreri as in 1 T ] ,  ‘I hcor a 9.2.2.

Sur rarnu up the results of ‘T i c r : c r c : . s  1 ta 3 , we v e t  the r - :  i a—

sentation (cinder ,‘~1 and A2)

f
t

( 2 5 )  = • f 1 ~ (- , ) f~~~~ , . i ) f ’  I - b. ) P. ,u )dsL U ~~
- 0 5 S S S

where  P(t) is a c o n t i n u ou s  m ar t  r - : a l e  w i t h  c :u a dr a t i c  ‘- c ~riation

I~~P. )c~~
, 

- 
) c ’ ( - ~ )ds.

~ S S

+This control is also non—antici pative w i t h  respect. to t he  u P )
introduced below P~fl.
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Also , t he re  is a h i e n o r  -roc~c :: : - ;  ~~~ ) , with rc: sv -cc-~ Lo i f  t::c

ot her processes in ( 2 3 ) ir e  :: c— ~ I c i i ’~ct i v ~ inc  r i c h  t h a t

1 3 ( t )  = l~~(3 ) c ( ~~~) ) d w ( ~~) . hvious l y ,  by the \ce~ ): cO!c\erce:1 0,

is in ~ f c r  a l l  L .  Let ~ L 
the di f  f~ a n t i c  L • ‘c n c r a  t on

a ss o c ia ten  with ( 2 5 )  in C. By a s l i l t m o d i  ‘] c a ~: :o:  o Lb

a rgument  associa ted  w i t h  ( 4 0 )  en d ( 4 1 )  in  [ 3 ]  , ~-:e o n: :  s ’tc o: Htc t:

~ ( ) solves the sub—mart ic~qcile Ic t obiem

Fu r t h e r m o r e , -~~(‘) is a station: :v process. z~. its ~n v n i J i z t

meas u r e  be denc tad  b’’ ;- , (which is the weak l imi t  of  1 4 J )

let = ii;:. 
~~
“
. 1I ~~ n the  -z l i str :  u t i c a  o~ ~ 

is c: . by ~~7 )
h

( .~4 ) ,

- L
( 2 6 )  -, L  = L ° L I Ci ) ;-~ C- i  ,~~ 

) ds -~ - 
~ 

~ 

. 

~~~~~~~~ ~~~~
o ~ S J U S - ‘ . -

i er:ard-:s. “he l im it  r: c c s : ;  i is st  : t  ic-rn: :’: , as s ti::  - t i n

but -  :-: - h f l y c  not been oLd f: ni m: t h a t  t h e r e  ; c c  ~- ‘a
(reflactita- diE f u r j  -n ) : ro- es: --:i Lh t h e  son : : r t r :  r u t  i-c:: . ‘. c:- - a:
orchobi’’ Os L;uoh a Parka:- :-:n-c’ oss , or  t h o r e  rr-nb d’ : ~ a

s:ationarv nrc Pec:ho: ’ ceat ~~ol ~: ( such  t f : n t  -a ( -  
~~~~

w .p . I. In :.ny Cd5 our  .: thod j :  ‘:c-s i - : :n i :  i :nc: o z i t i a  ::: t ’
o p t im a l  -c css -

, P ) c . ; . ,  [dc : :‘a l ti :~~r i a~ ‘ ::is[r~ i i t : i c c c -
- Ii - — .( .  ) ~~~~~~~~~~~~~~ w i L ly  f - L c s c  CO ; ~~ , :0 c o  to- :- i s t r i c- t ; c  vs
o f  1:c:’ b c :n d n - co €~as .r a b le  I : : . c Lj c : : o t  ~ (J± ( . ) ) , if  P 4 c :
cortin ucu: - ~

- . : .1 - - : i t L .  t h a  rcs:-ect z - - t i c ’ :-:oc ;cvs - n J  - c c c  c T ’ :  3 P
m d c c i , one of t h e  -seat ~~vt o c : c s  of thc- ’.:cn ’-: C c : : ’ c : 5 c ~ OLe : f f 0 3
is t i n t  i t  y i e l d f -  n s ;~: :o~ - s : :t(c:., ~n addition ~~:‘ i : : n r . ’-: i : : c : t d - v s
to ~~. Also , ~ a’ era :c cost per u n i t  t ime  or 3 ) , a aP is the
1 m i t  O~ I I~ a’.’er nc -c costs - ct  u n i t  tim~ - fo r  LhL-  n o i t u en c :  of
ap : c ’x i I v a L i  o n .

7 . np t imalinv of t ao  f i mi t  C’ ) . b e in i a l i r  i~ o~ ct t im a i

h T)re:’ : 1 z O L ; I  : 1 s c c r ’- s c c s , :d P ) a good •‘zinc~~i t c  -os cl -Li: a l i t ’
for the on inal o tt irc i r- ata ca-i : i n d l z m ~‘c i t h  t h e  n o  lec ted f I ’o F i o n
m o d e l )  . (‘ec ta i in  o :-L i : : a i  i t  y p rc ’ac  r t  e r a  re dc~ ~v to s can

T h’-’orcm I . As-sut pe :1 and An * Le t. v ( ) ie :ote a continucu- :

s t a t i o n a r y  pu r e  Packo ’;_ con t ro l , such t ha t  the cor rer icoc i n  re-
f l e c t i n g  di~ fu s i o n  T, ’

~~~~) c c ;  u n i  :u .j (in the weak sense) zinc has a
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t h - .
initial nazi cure bc ,0V)

i r ~~of . Let t a f  ‘ ( - )  3 - - n -  ‘n ’  t h e  d i ; c rc: : r e . l  : 3  hctermn 1 c. cc

processes , :Oo~~~
) . , ‘0t1O .3 n t - th e  ca’a-o i c o a n c o l  V ) .

th e  cost ~~L 
for the ~I:tc2c~:ol~ Lc-n ,r- :c- ’ss i s :

oi t i i i a l n t : . ’ ( f  ~
h . Let ‘“ 3::: ~~ ~~~ 

in ’:tni~~nt ;:n- :-n:ru far

Y~~ ( •  ) . ~~~ 
( . ) } ~~c3 Lb  j : c c r i  c at  n e a c c i  ass - b ’ •~~ cc:

~-:csa k1r ’ to ~ ( ) and n ’ , .~-u - - . , cc s  I: - - Q Lv z: r ’v c : - a n  ~r - : n :a i i a r
t . - t im- se  in ‘Lhcor e : :z :  1 cc’ 2 .  The ~hcorcrn fo l lo : - :s  fro s t  t a n s  ~~ci ( 2 4 ) .

5 , - —

f3~~~:-r e :.‘c h ;v e  n c- n eel: c l -  ci: ) a :  I - s e - . t - L i t  U t - ’ i S

st cit c-nor’.’ ore Pat - - c u , ~1 1 ‘- :  ~ cc t - - to a- ha t: 0 - is
c~ t imzcL w i t i c  res; CCU t i  -~t a - c h ’r ~1ans cc c-a : t r c~~:- tP - ti:c:c:e :::

Theorem 1. die cl - s c -s n * c : o a f l - - s c - - - i , i - a t  at  t he- ::- : ‘- : : - . : -  of

s ider able L c : - o i n c - l o a ’. - a:-: )  cl - c t  n i l .  iP-  r e : c - r c c  ro e:’::: t c -  [2

w h i r - a  h r o~~c c ct clcissccc o:~ an:: ‘ a c i c a -  satsoir a :: dea t with f e ;  - t

nu s eer of ~c cc i - to~ c s o o t u-:Lz~csic r or— ~).-lem c -:.

pj :’f:’: ~:c - :;
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